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I. EXPERIMENT SETUP

A. List of Instructions

Here we present the list of the 10 user instructions used
to evaluate the methods across 10 tasks in our experiments:

1) “put the apple inside the blue and white bowl”
2) “put the apple beside the blue and white bowl”
3) “put the orange inside the blue and white bowl”
4) “put the cookies inside the square metal box”
5) “put the banana inside the wicker basket”
6) “move the black 8 pool ball so that there is a triangle

made of balls on a pool table”
7) “move the black 8 ball so that there are balls in an X

shape”
8) “move the strawberry milkshake bottle to make three

milkshake bottles standing upright in a neat row”
9) “put the strawberry milkshake bottle near the plant”

10) “place the strawberry milkshake bottle standing up-
right in front of the white book”

B. Handling Unreachable Poses

In Section IV-D of the main paper, we demonstrate how
the goal pose for the object to be moved may be used
by a robot to physically grasp and rearrange the object.
To demonstrate this, we use standard grasp prediction and
motion planning techniques as described in Section III-E of
the main paper. However, it may not be possible for the
robot to pick up the object and place it immediately into the
predicted goal pose with the predicted goal orientation (e.g.
due to kinematic constraints). This issue is explained and
addressed in [1], which can be integrated into our framework
in future work. For our setting, we find that automatically
eliminating unreachable poses during the physics check stage
(before rendering) is an efficient and effective solution. The
heuristic we apply works as follows. Consider the face of
the object which points upwards (away from the table) in
the object’s initial pose. This is the face that will be grasped
by the robot’s suction gripper, and so we refer to it as the
grasping face. When the robot is imagining new poses for
this object, we discard sampled poses where this grasping
face is neither facing upwards nor facing towards the robot
arm. Intuitively, this discards poses where the robot would
need to reorient the object multiple times before being able
to place it in its final goal pose (for example, a pose where
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Fig. 1: The predicted goal pose from two different methods
on the “orange in bowl” task. We visualize this using the
foreground TSDF (in green) and the background TSDF (in
blue). The left example shows a task success, since the center
of mass of the orange is inside the bowl. The right example
shows a task failure, since the center of mass of the orange
is outside the bowl. However, if the task was to place the
orange beside the bowl, then the left example would be a
failure and the right example a success.

the grasping face is not pointing upwards but down towards
the table would be discarded). Note that this filter is only
applied for the physical experiments in Section IV-D, and
that for other experiments, we consider the full set of poses
and orientations. In future work, we can apply the solution
proposed in [1] to address this problem in a more general
way, or use other existing rearrangement methods [2], [3],
[4] to achieve the goal pose determined by our system.

C. Task Success Definitions

To determine whether a predicted goal pose is correct,
we visualize the TSDF of the movable object in that goal
pose (as can be seen in Figure 1). We then use the task
success definitions described below to determine whether this
qualifies as a success.

Shopping scene. For the tasks consisting of placing an
object inside a container (a bowl, a box or a basket), a
predicted goal pose for the movable object constitutes a
success if the center of mass of the movable object is within
the bounds of the container (or above it). E.g. if the task is
to place the apple inside the bowl, and the apple’s center of
mass is just inside the bowl, then this counts as a success.
For the task of placing an object beside a bowl, this counts as
a success if the object’s center of mass is outside the bowl



Fig. 2: The predicted goal pose from two different methods
on the “pool balls in a triangle” task. The left example shows
a task success, since the movable ball is within the bounds
created by the neighboring balls. The right example shows a
task failure, since the movable ball is outside those bounds.

but not as far from the bowl as the distance between the
bowl and the basket (as that would be too far). Intuitively, the
object must be outside the bowl but not too far away from the
bowl in order to qualify as beside the bowl. Figure 1 visually
illustrates the task success definitions. As always, we shuffle
the objects in the scene in between each repeat. Then we run
the method again (starting with collecting images of the new
initial scene configuration). This allows us to test whether the
methods are robust to different starting conditions.

Pool ball scene. For the triangle task, we take out one of
the balls from either side of the triangle, and the method must
place it back. In between repeats, we also shuffle some of
the ball positions, and as always we redo the data collection
scanning and run the pipeline again for the new repeat. Note
that the missing ball is always the black ball, so that we
can evaluate the same user instruction across many starting
configurations of the scene. The success region within which
the movable ball must be placed to achieve task success
is defined by the two neighboring balls (near the optimum
position, which is where the ball was originally before being
taken out from the side of the shape). Specifically, along
the x-axis (i.e. the left-right axis in Figure 2), the center of
mass of the movable object must be below the bottom of
the ball above it in the x-axis, and above the top of the ball
below it. Along the y-axis (the top-bottom axis in the figure),
the center of mass of the movable object must be between
the centers of mass of those neighboring balls. An example
can be seen in Figure 2. This same success region definition
(using the neighboring balls) is also used in the “X shape”
task. Here, we randomly take out one of the balls from near
the X (except those at the very ends of the lines), and the
methods must place it back to complete the X shape.

Shelf scene. For the task of placing bottles in a row, the
movable object must be on the same shelf as the other bottles,
and to the left of the leftmost other bottle (forming a row).
For the book task, at least part of the bottle must be in front
of the book. For the “near plant” task, the bottle can be on
either side of the plant as long as it is nearby, but its center
of mass cannot be in front of the left half of the book (since

Fig. 3: The predicted goal pose from two different methods
on the “book” task from the shelf scene. The left example
shows a correct prediction of the position, since the bottle
is in front of the book. It also shows a correct orientation
prediction, since the bottle is standing upright with its cap
at the top. Therefore, the predicted 6-DoF goal pose is
correct here. In the right example, the predicted position
is not correct since the bottle is not in front of the book.
Furthermore, the predicted orientation is also not correct,
because the bottle is lying on its side rather than standing
upright.

then it would be too far from the plant). In order for the full
6-DoF pose to qualify as correct for these tasks, the bottle
must also be placed upright (i.e. with the bottle cap facing
upwards). This is visualized in Figure 3. This means that the
methods must perform (in imagination) 6-DoF reorientation,
and determine the natural pose for this bottle zero-shot,
without requiring any training example arrangements.

Physical execution. In Section IV-D of the main paper,
we demonstrate how a robot might use the object goal pose
determined by our method to perform pick-and-place. The
success definition for predicting a 6-DoF goal pose is the
same as the one described above for the shelf scene. The
success definition for physically placing the bottle is that
when the robot has placed and released it, it must be upright
and in the correct position. Failures can occur e.g. when the
bottle collides with the shelf while the robot is moving it
and falls out of the gripper, so that it does not end up being
placed successfully. We report the success rates for both goal
pose prediction and physical execution in Section IV-D.

II. FAILURE MODES

In this section, we provide deeper insights into some
failure modes of the current Dream2Real implementation
which we observed in the experiments.

Heavily occluded containers. In the shopping scene, all
methods and baselines achieved a lower success rate on the
“cookies in box” task. By inspecting the score heatmaps, we
also find that the higher-scoring poses of the cookie packet
are often on the edge of the box. One possible explanation
for this behavior is as follows: when the cookie packet is
in the middle of the box, almost all of the box is occluded
from the top-down view by the cookie packet. This makes it
difficult for CLIP to identify the box in the rendered images,



and therefore to reliably evaluate whether the goal caption is
satisfied. This difficulty is also exacerbated by the reflective
surface of the metal box. It may be possible to mitigate this
difficulty by rendering the scene from multiple views and
aggregating CLIP scores across them, because then the box
would be less occluded from other views, and so CLIP would
be able to evaluate the arrangement more accurately.

Nearly symmetric geometry. Consider the pink bottle
from the shelf scene. When flipped upside down, it has a
similar geometry, due to its almost cylindrical shape. We
find that CLIP sometimes gives high scores to arrangements
where the three bottles are in a row but the pink bottle is
upside down. This could be explained by the fact that the
three bottles still form a symmetric row of three cylinders.
Given this, CLIP is not able to distinguish very well whether
the pink bottle is upside down or not, since it is nearly
symmetric along this axis due to its cylindrical shape. We
also note that the CLIP model we use has a 336x336 input
resolution. Higher resolution models may be able to discern
this detail more easily. Preliminary exploration with the GPT-
4 vision encoder suggests that it may be promising for
discriminating whether a bottle’s orientation is correct in
such cases.

Collisions with unobserved faces. When executing the
rearrangement from the initial pose to the goal pose, the
robot performs motion planning with collision avoidance,
using the physics models constructed previously. We also
check for collisions between the object being grasped and
the environment during this motion planning. However, we
do not have a complete physics model of the object, as the
underside of the object cannot be observed. For example, in
the shelf scene, the robot cannot easily see the part of the
bottle which makes contact with the table. This means that
during the motion planning, collisions between this side of
the object and the environment may not be detected, and
during execution this may lead to a collision. In future, this
issue can be mitigated through shape completion methods.

Stability checking too permissive. When filtering out
poses using physics checks, we use checks which are faster
to run than fully-fledged dynamics simulation, but are less
accurate: when in doubt, we err on the side of letting the
VLM decide. However, this means that sometimes the VLM
is shown physically strange arrangements which are very out-
of-distribution (e.g. a bottle lying sideways on top of a plant),
and so it might give erroneous outputs. This can be fixed
using more thorough physics checking and also a stronger
VLM.
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